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Selection of the Best

• Select the best from a finite set of alternatives, whose performances are
unknown and can only be learned by sampling

• E.g., treatment selection, display advertising, inventory management

• Sampling is expensive, thereby budget-constrained
• can afford some time to make a good sampling decision

• Goal: a sampling strategy to learn the performances and identify the
best as efficiently as possible
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Contextual Information

• Covariates: age, gender, browsing history, location
• “Best” is not universal but depends on the context

• general v.s. specific
• Personalized decision-making emerges (big data and advanced IT)

• precision medicine
• customized advertisement
• robo-advisor
• smart building
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Personalized Cancer Prevention
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Esophageal cancer is a leading cancer among males (4th in China and 7th in U.S.)

• BE is a precursor to EAC and its management has drawn much attention
• 3 treatment regimens:

(1) no drug
(2) aspirin chemoprevention
(3) statin chemoprevention

• 4 covariates:
(1) age
(2) annual progression rate of BE to EAC
(3) effect of aspirin
(4) effect of statin
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Contextual Selection

• Consider M alternatives with performances θ1(x), . . . , θM(x), where
x = (x1, . . . , xd)⊺ are the covariates

x

θ i
(x

)

i = 1

i = 2

i = 3

• Goal: develop a sequential sampling strategy to learn the decision rule

i∗(x) := argmax
1≤i≤M

θi(x), x ∈ X

• The decision rule is estimated offline and is then applied online to
subsequent arriving individuals

• A sampling strategy specifies where to take a sample, namely (i, x),
given available information at time n
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Related Problem: Multi-armed Bandit

• Classical framework for sequential decision-making (Robbins, 1952)
• select an alternative
• take a (random) sample
• update estimates

• “Arm”: treatment regimen, display of ads, inventory policy
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Related Literature

• Contextual bandit
• Goldenshluger and Zeevi (2013); Perchet and Rigollet (2013)
• minimize “regret” relative to an oracle, rather than identify the best
• covariates arrive randomly, instead of being actively selected
• sampling decision chooses i only, instead of (i, x)

• Individualized treatment rules (ITR)
• Qian and Murphy (2011); Zhao et al. (2012)
• learn ITR from the given data of (covariate, treatment, response)
• does not involve design of sampling strategy

• Ranking and selection
• Kim and Nelson (2001); Frazier et al. (2008)
• no covariates: maxi θi

• Bayesian optimization
• Shahriari et al. (2016)
• optimize one single unknown function: maxx θ(x)

• Active learning
• Settles (2012)
• binary responses and discrete-valued covariates
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Typical Structure of Bayesian Sequential Learning

(i) Calculate the posterior distribution of (θ1, . . . , θM) based on the samples
collected so far

(ii) Use the posterior to decide the next sampling location via certain
criterion

• often formulated as an optimization problem

(iii) Take a (noisy) sample at the chosen location
(iv) Iterate until the sampling budget is exhausted

• Sampling strategies differ in
• model for (θ1, . . . , θM): linear, nonparametric
• model for the sampling noise
• deterministic or randomized sampling decision
• criterion for choosing the sampling decision
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Nonparametric Bayesian Formulation

• Treat {θ1(x), . . . , θM(x)} as random functions and assume a prior under
which they are independent Gaussian processes (GPs)

• GP is specified by mean function µ(x) and covariance function k(x, x′)
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Gaussian Process Regression

• Sampling decision at time n is (an, vn): take a sample of θan(vn)
• alternative an ∈ {1, . . . ,M} at location vn ∈ X

• The sample yn+1 is an independent, unbiased, and normally distributed

yn+1 | θan(vn) ∼ θan(vn) + N (0, λan).

• Under the posterior, {θ1(x), . . . , θM(x)} are independent GPs
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Objective of Sampling Strategy

• After sampling budget N is exhausted, we would estimate i∗(x) based on
the posterior means of θi(x)

i∗(x) ≈ argmax
1≤i≤M

E[θi(x)|FN] = argmax
1≤i≤M

µN
i (x)

• View maxi µ
N
i (x) as a “reward”

• its expected value depends on π = {(an, vn) : n = 0, . . . ,N − 1}
• maximize the reward ⇐⇒ minimize the “opportunity cost”
maxi θi(x) − maxi µ

N
i (x)

• The objective becomes

sup
π∈Π

Eπ

[∫
X

max
1≤i≤M

µN
i (x)dx

]
• only terminal reward, no intermediate rewards are collected
• samples are expensive to acquire and N is usually not large
• Focuses on identifying the best alternative, rather than minimizing the
accumulated regret
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Myopic Sampling Strategy

• If N = 1, the optimal strategy is

argmax
1≤i≤M,x∈X

E
[∫

X
max
1≤a≤M

µ1
a(v)dv

∣∣∣ S0 = s, a0 = i, v0 = x
]

• Myopic: treat each time period as if there were only one sample left

argmax
1≤i≤M,x∈X

E
[∫

X
max
1≤a≤M

µn+1
a (v)dv

∣∣∣ Sn = s, an = i, vn = x
]

• This is equivalent to maximizing

E
[ ∫

X
max
1≤a≤M

µn+1
a (v)dv −

∫
X

max
1≤a≤M

µn
a(v)dv︸ ︷︷ ︸

independent of (i, x)

∣∣∣ Sn = s, an = i, vn = x
]

• increment in the expected value of information gained by sampling (i, x)
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Asymptotic Analysis

Theorem (Z., Shen, Hong, and Ding, 2019)
The myopic sampling strategy is consistent:

(i) VarN[θi(x)] → 0 a.s.
(ii) µN

i (x) → θi(x) a.s.
(iii) argmaxi µ

N
i (x) → argmaxi θi(x) a.s.

under the following assumptions

(i) k0i (x, x′) = τ 2
i ρi(|x − x′|) and ρi is positive, continuous, decreasing

(ii) µ0
i and λi(·) are continuous

(iii) X is compact with nonempty interior
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Proof Sketch

• Step 1: Fix i. Assume an alternative i is sampled infinitely often. Show
VarN[θi(x)] → ∞ for all x under the sampling strategy

• a key, new technical result is to prove kni converges uniformly as n → ∞
using reproducing kernel Hilbert space theory

• Step 2: Show no alternatives are sampled only finite times as N → ∞
under the sampling strategy
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Generalization

• One may have prior knowledge with regard to the covariates
• certain values may be more important or appear more frequently than
others

• Suppose the prior knowledge is expressed by a probability density
function γ(·) on X

• objective becomes

sup
π∈Π

Eπ

[∫
X

max
1≤i≤M

µN
i (x)γ(x)dx

]
• the myopic strategy becomes

argmax
1≤i≤M,x∈X

E

[∫
X

max
1≤a≤M

µn+1
a (v)γ(v)dv

∣∣∣ Sn = s, an = i, vn = x
]

• The asymptotic analysis still holds
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Computation

• Key component is hn
i (v, x) := E

[
maxa µn+1

a (v)|Sn, (an, vn) = (i, x)
]

• the myopic strategy is to solve

max
1≤i≤M,x∈X

∫
X
hni (v, x)γ(v)dv

• Given Sn, the predictive distribution of µn+1
a (v) before sampling (i, x) is

µn+1
a (v) =

{
µn
a(v) + σ̃n

a(v, x)Zn+1, if a = i
µn
a(v), if a ̸= i

where σ̃n
a(v, x) = kna(v,x)

kna(x,x)+λa

• hn
i (v, x) is in the form of E[(α + βZ) ∨ γ] and can be expressed in terms

of the standard normal distribution functions

hn
i (v, x) = |σ̃n

i (v, x)|ϕ
(∣∣∣∣ ∆n

i (v)
σ̃n
i (v, x)

∣∣∣∣) − |∆n
i (v)|Φ

(
−

∣∣∣∣ ∆n
i (v)

σ̃n
i (v, x)

∣∣∣∣)
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Stochastic Gradient Ascent

• For each i, we need to solve

max
x∈X

∫
X
hn
i (v, x)γ(v)dv = max

x
E[hn

i (ξ, x)],

where ξ is a X -valued random variable with density γ(·)

• Use SGA to solve the optimization problem
• sample average approximation is too slow

• ∂
∂xh

n
i (ξ, x) is an unbiased estimator of ∂

∂xE[h
n
i (ξ, x)] under certain

regularity conditions, and it can be derived analytically for various prior
covariance functions
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• Select the best among 3 treatment regimens for BE
(1) no drug
(2) aspirin chemoprevention
(3) statin chemoprevention
as a function of 4 individual characteristics
X1 age
X2 annual progression rate of BE to EAC
X3 effect of aspirin (i.e., progression reduction effect)
X4 effect of statin
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Distribution of Covariates

• Assume X1, · · · , X4 are independent

Covariates Distributions Support Mean

X1 Discrete (Figure below) {55, · · · , 80} 64.56
X2 Unif (0, 0.1) [0, 0.1] 0.05
X3 Triangular (0, 0.59, 1) [0, 1] 0.53
X4 Triangular (0, 0.62, 1) [0, 1] 0.54

55 60 65 70 75 80
0

0.02

0.04

0.06

Age X1

Probability mass function of X1
(truncated).
Source: U.S. 2013 population data,
U.S. Census Bureau.
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Markov Model

• A Markov chain model was developed by Hur et al. (2004) and Choi et al.
(2014) to study the effectiveness of aspirin and statin chemoprevention
against EAC

BE Inoperable or 
Unresectable

Perform
Esophagectomy

Post
Esophagectomy

BE with 
Chemoprevention

Chemoprevention
Complication

DeathCancer

• A male with BE goes through
various health state until death

• The person in each state can die
from age-related all-cause
mortality

• The time length between state
transition is one month

• Detailed structure inside dotted
box depends on drug

• Parameters are well calibrated

• Output Yi(X): Quality-adjusted life years (QALYs) after the starting age
under treatment regimen i conditioning on X.
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Results

Samples
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• Regret: difference in expected QALYs between the true optimal
treatment and the selected treatment

• SA (successive allocation): choose i in a round-robin fashion and
choose x uniformly

• LVF (large-variance-first): choose (i, x) that maximizes Varn(θi(x))
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Added Value of Contextual Information: Larger Expected QALYs

• Traditional: regret is θi∗(x)(x) − θi†(x) = maxi θi(x) − θi†(x), where

i† := argmax
1≤i≤M

{E[µi(X)]}

• Personalized: regret is maxi θi(x) − θ
î∗(x)(x), where î∗(x) is computed via

the myopic sampling strategy
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Left: The entire population. Right: A specific group with X = (X1, X2, 0.9, 0.2)⊺ .
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Concluding Remarks

• Emergence of personalization/customization in business analytics
motivates us to consider contextual selection

• performance of each alternative is unknown
• samples are noisy and expensive to acquire

• Develop a nonparametric Bayesian sampling strategy to learn the
decision rule as a function of the covariates

• the “intermediate regret” is discarded
• assume we can choose the value of covariates
• the decision rule is estimated offline and is then applied online to
subsequent arriving individuals

• more suitable for scenarios where sampling budget N is small or moderate

• Showcase the developed approach via personalized cancer prevention
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Thanks!
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