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Introduction



Service Systems

call centers, hospitals, inventory, ride-sharing, etc.

Optimizing Performance ≈ Managing Fluctuations

• Service operations, capacities, schedules: largely controllable
• Arrivals: exogenous, represent a primary source of uncertainty
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Data-to-Decision

Simulation

StochasticsStatistics

Data Decision

• Use data and statistical tools as black magic (7)
• Modeling should be driven by both data and domain knowledge (3)
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Standard Approach to Modeling Arrivals

1. Collect arrival data
2. Compute inter-arrival times
3. Fit a probability distribution from popular families (Exp, Gamma,

Weibull, etc.)
4. Perform goodness-of-fit test

• Poisson process, renewal process, and their time-varying extensions
• M/ · /·

• G/ · /·

• M(t)/ · /·

• G(t)/ · /·

• and so on...
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Does it really matter (that much)?
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Data-Driven Modeling with Domain
Knowledge



Spoiler

• Poisson microstructure: inter-arrival times are indeed exponential

• Microstructure does NOT matter much for typical service decisions
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Arrivals to a Ride-sharing Platform

• Uber Pickups (NYC): daily volume 10,000∼40,000 in 2014
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Hypothesis Test for Exponentiality of Inter-arrival Times

Lemma
If N(t) is an inhomogeneous Poisson process with arrival rate λ(t), then
N(Λ−1(t)) is a standard Poisson process, where Λ(t) =

∫ t
0 λ(s)ds.

• Null hypothesis: arrivals follow an inhomogeneous Poisson process
• Under the null, the time-changed inter-arrival times are i.i.d.
exponential

• See also Brown et al. (2005) and Kim and Whitt (2014)
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Impact on Performance?

• Zheng, Zhang, and Glynn (2018)
• Run three different arrival sequences through the same service system

1. Real arrival data
2. Split the real arrivals into intervals of length x minutes; redistribute them

randomly within each interval
3. Split the real arrivals into intervals of length x minutes; redistribute them

equally spaced within each interval

• Compare performance using synchronized service times
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Distribution of Waiting Times (x = 3)

almost identical
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Distribution of Waiting Times (x = 12)

noticeably different
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Look at the Bigger Picture

• Microstructure does not seem to have much impact on performance
• Should focus on the stochastic behavior over the time scale that is
compatible with the service time and matters to decisions
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Known Fact: Overdispersion

• Jongbloed and Koole (2001), Avramidis et al. (2004), Oreshkin et al. (2016)
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Why Important?

• More uncertainty in demand, more requirement for supply
• Newsvendor: if D ∼ N (m, σ2), then Q∗ = m+ βσ, where β represents the
service level

• Base stock policy under periodic review has a similar formula

• Square-root staffing rule for large service systems

n ≈ λ

µ
+ β

√
λ

µ

• The term
√

λ comes from
• Var[A(t)] = E[A(t)] = λt (Poisson arrivals)
• Var[A(t)] ∼ O(λt) as λ → ∞ (renewal arrivals)
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How does fluctuation scale up?
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Fluctuation Scaling



New Finding: Overdispersion is Amplified by Heavy Traffic

log(Mean) < log(Var.) < 2 log(Mean)
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Power Law Relationship

• Assume a linear relationship at the logarithmic scale

log(Var.) = p log(Mean) + c
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log(mean)
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• p ≈ 1.6 and R2 = 0.99
• Taylor’s law in ecology (Taylor, 1960), also found in physics, finance, etc.
• Conjecture: change safety margin of the staffing rule

O(λ1/2) 7−→ O(λp/2)
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Another Example (with Spatial Info.)

• Ride information of DiDi Chengdu in Nov. 2016: time and location
• Partition the city into 10 × 10 grid, partition one day into 24 hours
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Desirable Features for Arrival Model

• Overdispersion
• Fluctuation scaling with power law
• Poisson microstructure
• Analytical tractability
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Typical Treatment for Overdispersion

• Doubly stochastic Poisson process (DSPP): stochastic arrival rate
• Whitt (1999): A(t) = N(λGt)

• G is a random variable with E(G) = 1, capturing day-to-day random
variation, i.e. “busyness of the day”

• This model implies Var. ∼ O(λ2)

Var(N(λGt)) = λt+ λ2t2Var(G)

• Overestimate overdispersion: p ∈ (0, 1)
• Lack of flexibility
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New Arrival Model

• A(t): a DSPP with arrival rate X(t)

dX(t) = κ(λ − X(t)) dt+ σλα
√

X(t) dB(t)

• X(t) > 0
• Equilibrium of X(t) is λ

• Volatility term: σλα
√

X(t) ∼ O(λα+1/2)

• So Var[A(t)] ∼ O(λ2α+1): p = 2α + 1
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Limit Theorem

Theorem
Suppose X(t) is initialized with its stationary distribution π and α ∈ (0, 1

2 ).
Then, for any given t > 0,

Aλ(t) − λt
λα+ 1

2
⇒

∫ t

0
U(s) ds,

as λ → ∞, where U(t) is an Ornstein-Uhlenbeck (OU) process

dU(t) = −κU(t) dt+ σdB(t),

with initial distribution being its unique stationary distribution, i.e. normal
distribution with mean 0 and variance σ2

2κ
.

• Critical for deriving the staffing rule
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Staffing Rule



Service Quality v.s. Utilization

• Large queueing system: both λ and number of servers are large
• Service quality is measured by delay probability
• Goal: find minimum number of servers to make delay probability ≤ ϵ

• Key: distribution of queue length
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Infinite-server Queue Approximation

• Consider an infinite-server queue with exponential service times
• Let Qλ(t) denote the number of customers in the system
• Consider the scaled number of customers

Q̃λ =
Q(t) − λ/µ

λα+ 1
2

• Show Q̃λ(t) converges a non-degenerate limit Q̃∞(t) as λ → ∞
• Compute the stationary distribution of Q̃∞(t) as t → ∞, denoted by Q̃∞

• n: number of servers in the many-server queue

ϵ ≈ P(Qλ(t) ≥ n) = P
(
Q̃λ(t) ≥ n − λ/µ

λα+ 1
2

)
≈ P

(
Q̃∞ ≥ n − λ/µ

λα+ 1
2

)
• Let β solves P(Q̃∞ ≥ β) = ϵ, then

n∗ ≈ λ

µ
+ β · λα+ 1

2

• β can be computed explicitly
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Stationary Distribution Q̃∞

• By virtue of the exponential service assumption,

Qλ(t) = Qλ(0) + Aλ(t) − N′
(

µ

∫ t

0
Qλ(s)ds

)
,

where N′(·) is an independent Poisson process with unit rate

Qλ(t) − λ
µ

= Qλ(0) − λ
µ

+ Aλ(t) − λt − µ
∫ t
0 Qλ(s)ds − λt

− N′
(

µ
∫ t
0 Qλ(s)ds

)
− µ

∫ t
0 Qλ(s)ds

• Scaled by λα+ 1
2 and letting λ → ∞

Q̃∞(t) = Q̃∞(0) +
∫ t
0 U(s) ds − µ

∫ t
0 Q̃∞(s) ds − 0
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• Solve the equation

Q̃∞(t) =
∫ t

0
U(s)eµ(t−s) ds

• The Laplace transform of Q̃∞(t) can be computed analytically
• Sending t → ∞ yields the Laplace transform of Q̃∞

• normal distribution
• parameters can be calculated analytically

• Easy to compute β in the staffing rule

n ≈ λ

µ
+ β · λα+ 1

2

by P(Q̃∞ ≥ β) = ϵ
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Performance in Practice

• Call center of a U.S. bank
• Use customer arrivals in weekdays in 2002
• A constant staffing level for each 30-min time period

• 48 staffing levels for a day in total
• Static staffing: no day-to-day adjusting

• Simulate the system with real customer arrivals and exponential service

Target Quality of Service Our Staffing Rule Square-root Staffing Rule
0.20 0.230 0.537
0.10 0.137 0.469
0.05 0.084 0.439
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Concluding Remarks



Conclusions

• Modeling should be driven by both data and decisions
• Arrivals’ microstructure is Poisson but has little impact on performance
• Stochastic behavior at longer time scale matters, e.g., overdispersion

• Overdispersion is amplified by heavy traffic
• Fluctuation scales up following a power law

• Proposed New tractable arrival model to capture the power law

• Developed the associated staffing rule with safety margin O(λα+1/2)
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Questions?
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