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Introduction



Service Systems

Service System

Arrivals

call centers, hospitals, inventory, ride-sharing, etc.

Optimizing Performance ~ Managing Fluctuations

- Service operations, capacities, schedules: largely controllable

- Arrivals: exogenous, represent a primary source of uncertainty



Data-to-Decision

Data —'i \’ i_’ Decision

- Use data and statistical tools as black magic (x)

- Modeling should be driven by both data and domain knowledge (v)



Standard Approach to Modeling Arrivals

1. Collect arrival data
2. Compute inter-arrival times

3. Fit a probability distribution from popular families (Exp, Gamma,
Weibull, etc.)

4. Perform goodness-of-fit test

- Poisson process, renewal process, and their time-varying extensions
- G/ /-
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- and so on...



Does it really matter (that much)?



Data-Driven Modeling with Domain
Knowledge




- Poisson microstructure: inter-arrival times are indeed exponential

- Microstructure does NOT matter much for typical service decisions



Arrivals to a Ride-sharing Platform

- Uber Pickups (NYC): daily volume 10,000~40,000 in 2014
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Hypothesis Test for Exponentiality of Inter-arrival Times

Lemma
If N(t) is an inhomogeneous Poisson process with arrival rate A(t), then
N(A™'(t)) is a standard Poisson process, where A(t) = fot A(s)ds.

- Null hypothesis: arrivals follow an inhomogeneous Poisson process

- Under the null, the time-changed inter-arrival times are i.i.d.
exponential

- See also Brown et al. (2005) and Kim and Whitt (2014)
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Impact on Performance?

- Zheng, Zhang, and Glynn (2018)
- Run three different arrival sequences through the same service system
1. Real arrival data
2. Split the real arrivals into intervals of length x minutes; redistribute them
randomly within each interval
3. Split the real arrivals into intervals of length x minutes; redistribute them
equally spaced within each interval

- Compare performance using synchronized service times



Distribution of Waiting Times (x = 3)
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Distribution of Waiting Times (x = 12)
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Look at the Bigger Picture
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- Microstructure does not seem to have much impact on performance

- Should focus on the stochastic behavior over the time scale that is
compatible with the service time and matters to decisions



Known Fact: Overdispersion

Arrivals of Weekdays in July 2001
—— daily avg.
—— one std. band {obsv.)
1200 —— one std. band {Pois.)
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- Jongbloed and Koole (2001), Avramidis et al. (2004), Oreshkin et al. (2016)



Why Important?

- More uncertainty in demand, more requirement for supply

- Newsvendor: if D ~ N(m, o?), then Q* = m + Bo, where 3 represents the
service level
- Base stock policy under periodic review has a similar formula

- Square-root staffing rule for large service systems

A A
n=~—+ ,3\/7
1 1
- The term v/A comes from

- Var[A(t)] = E[A(t)] = At (Poisson arrivals)
- Var[A(t)] ~ O(At) as A — oo (renewal arrivals)



How does fluctuation scale up?



Fluctuation Scaling




New Finding: Overdispersion is Amplified by Heavy Traffic

Variance vs Mean of Arrival Counts (log scale)
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Power Law Relationship

- Assume a linear relationship at the logarithmic scale
log(Var.) = plog(Mean) + ¢

Variance vs Fitted Values (log scale)
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- p~16andR*=0.99
- Taylor's law in ecology (Taylor, 1960), also found in physics, finance, etc.

- Conjecture: change safety margin of the staffing rule
ON?) — O(WN7?)



Another Example (with Spatial Info.)

- Ride information of DiDi Chengdu in Nov. 2016: time and location
- Partition the city into 10 x 10 grid, partition one day into 24 hours

Mean Standard Deviation

logV=1.18l0gE-0.08




Desirable Features for Arrival Model

- Overdispersion
- Fluctuation scaling with power law
- Poisson microstructure

- Analytical tractability



Typical Treatment for Overdispersion

- Doubly stochastic Poisson process (DSPP): stochastic arrival rate
- Whitt (1999): A(t) = N(AGt)
- Gis arandom variable with E(G) = 1, capturing day-to-day random
variation, i.e. “busyness of the day”

- This model implies Var. ~ O(\?)
Var(N(AGt)) = At + A*t*Var(G)

- Overestimate overdispersion: p € (0,1)
- Lack of flexibility



New Arrival Model

- A(t): a DSPP with arrival rate X(t)

dX(t) = k(X — X(t)) dt + oA*/X(t) dB(t)

- X(t) >0

- Equilibrium of X(t) is A

- Volatility term: oA \/X(t) ~ O(A*+"/2)
- So VarlA(t)] ~ O*): p = 20 +1



Limit Theorem

Theorem

Suppose X(t) is initialized with its stationary distribution 7 and a € (0, 1).
Then, for any given t > 0,

A Z At /tu(s) ds,

Ao+3
as A — oo, where U(t) is an Ornstein-Uhlenbeck (OU) process
dU(t) = —xU(t) dt + odB(t),
with initial distribution being its unique stationary distribution, i.e. normal

distribution with mean 0 and variance %

- Critical for deriving the staffing rule
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Staffing Rule




Service Quality v.s. Utilization

- Large queueing system: both X and number of servers are large
- Service quality is measured by delay probability
- Goal: find minimum number of servers to make delay probability < e

- Key: distribution of queue length
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Infinite-server Queue Approximation

- Consider an infinite-server queue with exponential service times
- Let Qa(t) denote the number of customers in the system
- Consider the scaled number of customers

= Q(t) — A

o = QO =M

Aotz

- Show Qx (t) converges a non-degenerate limit Qoo (t) as A — oo
- Compute the stationary distribution of Qs (t) as t — oo, denoted by Qoo
- n: number of servers in the many-server queue

e~P(Qx(t) >n)=P (OA(U > n— )\//4> ~P <éw > n— )\/M>

N A

- Let 8 solves P(Qws > ) = ¢, then
n* 2 + 8- A+3
)%
- B can be computed explicitly
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Stationary Distribution Q.

- By virtue of the exponential service assumption,

Qx(t) = Qx(0) + Ax(t) = N (M/ Qx(s) dS) ;

where N’(+) is an independent Poisson process with unit rate

Qx(t) -

TI>

:Q)\(O)_% + Aa(t) — At — ,uf Qx(s)ds — At
N (M fot Qx(s)ds) = ufot Qx(s)ds
- Scaled by A>*2 and letting A — oo

Qoo (t) = Qoo +[0 ds—ufooo s)ds — 0

23



- Solve the equation

t
Qoo (t) = / U(s)e* =9 ds
0

- The Laplace transform of éoc(t) can be computed analytically

- Sending t — oo yields the Laplace transform of Que
- normal distribution
- parameters can be calculated analytically

- Easy to compute 3 in the staffing rule

nzi+6.)\a+%
1

by P(Que > f8) = ¢
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Performance in Practice

- Call center of a U.S. bank
- Use customer arrivals in weekdays in 2002

- A constant staffing level for each 30-min time period
48 staffing levels for a day in total
Static staffing: no day-to-day adjusting

- Simulate the system with real customer arrivals and exponential service

Target Quality of Service  Our Staffing Rule  Square-root Staffing Rule
0.20 0.230 0.537
0.10 0.137 0.469
0.05 0.084 0.439
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Concluding Remarks




Conclusions

- Modeling should be driven by both data and decisions

- Arrivals’ microstructure is Poisson but has little impact on performance
- Stochastic behavior at longer time scale matters, e.g., overdispersion

- Overdispersion is amplified by heavy traffic
- Fluctuation scales up following a power law

- Proposed New tractable arrival model to capture the power law

- Developed the associated staffing rule with safety margin O(A>*"/2)
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Questions?
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