Fluctuation Scaling in Large Service Systems

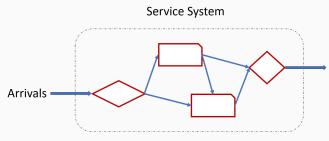
Xiaowei Zhang Qingdao, June 5, 2018

Joint work with L. Jeff Hong (CityUHK) and Jiheng Zhang (HKUST)

1. Introduction

- 2. Data-Driven Modeling with Domain Knowledge
- 3. Fluctuation Scaling
- 4. Staffing Rule
- 5. Concluding Remarks

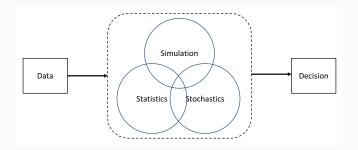
Introduction



call centers, hospitals, inventory, ride-sharing, etc.

Optimizing Performance \approx Managing Fluctuations

- Service operations, capacities, schedules: largely controllable
- · Arrivals: exogenous, represent a primary source of uncertainty



- $\cdot\,$ Use data and statistical tools as black magic (**x**)
- \cdot Modeling should be driven by both data and domain knowledge (\checkmark)

Standard Approach to Modeling Arrivals

- 1. Collect arrival data
- 2. Compute inter-arrival times
- 3. Fit a probability distribution from popular families (Exp, Gamma, Weibull, etc.)
- 4. Perform goodness-of-fit test
 - Poisson process, renewal process, and their time-varying extensions
 - \cdot M/ \cdot / \cdot
 - $\cdot ~~ G/ \cdot / \cdot$
 - $M(t)/\cdot/\cdot$
 - $G(t)/\cdot/\cdot$
 - \cdot and so on...

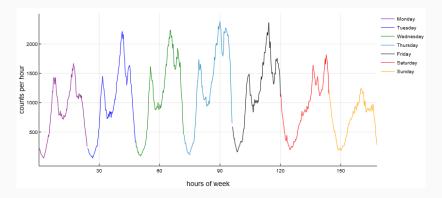
Does it really matter (that much)?

Data-Driven Modeling with Domain Knowledge

- · Poisson microstructure: inter-arrival times are indeed exponential
- Microstructure does NOT matter much for typical service decisions

Arrivals to a Ride-sharing Platform

• Uber Pickups (NYC): daily volume 10,000~40,000 in 2014

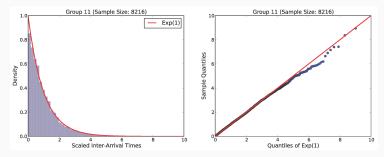


Hypothesis Test for Exponentiality of Inter-arrival Times

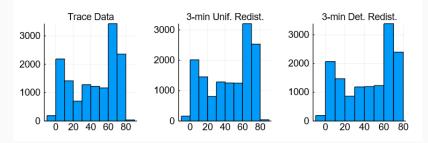
Lemma

If N(t) is an inhomogeneous Poisson process with arrival rate $\lambda(t)$, then $N(\Lambda^{-1}(t))$ is a standard Poisson process, where $\Lambda(t) = \int_0^t \lambda(s) ds$.

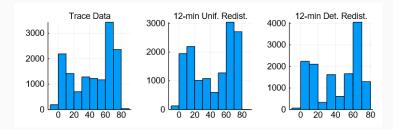
- Null hypothesis: arrivals follow an inhomogeneous Poisson process
- Under the null, the time-changed inter-arrival times are i.i.d. exponential
- See also Brown et al. (2005) and Kim and Whitt (2014)



- Zheng, Zhang, and Glynn (2018)
- Run three different arrival sequences through the same service system
 - 1. Real arrival data
 - 2. Split the real arrivals into intervals of length *x* minutes; redistribute them randomly within each interval
 - 3. Split the real arrivals into intervals of length *x* minutes; redistribute them equally spaced within each interval
- Compare performance using synchronized service times



almost identical

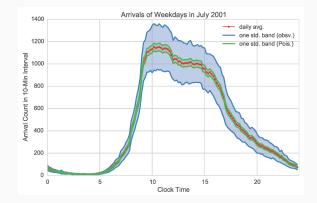


noticeably different

Look at the Bigger Picture

- · Microstructure does not seem to have much impact on performance
- Should focus on the stochastic behavior over the time scale that is compatible with the service time and matters to decisions

Known Fact: Overdispersion



• Jongbloed and Koole (2001), Avramidis et al. (2004), Oreshkin et al. (2016)

Why Important?

- · More uncertainty in demand, more requirement for supply
 - Newsvendor: if $D \sim \mathcal{N}(m, \sigma^2)$, then $Q^* = m + \beta \sigma$, where β represents the service level
 - Base stock policy under periodic review has a similar formula
- · Square-root staffing rule for large service systems

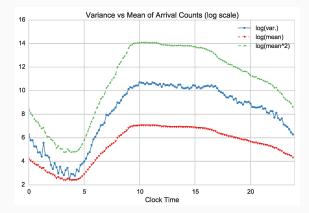
$$n \approx rac{\lambda}{\mu} + \beta \sqrt{rac{\lambda}{\mu}}$$

- \cdot The term $\sqrt{\lambda}$ comes from
 - $\operatorname{Var}[A(t)] = \mathbb{E}[A(t)] = \lambda t$ (Poisson arrivals)
 - $\operatorname{Var}[A(t)] \sim \mathcal{O}(\lambda t)$ as $\lambda \to \infty$ (renewal arrivals)

How does fluctuation scale up?

Fluctuation Scaling

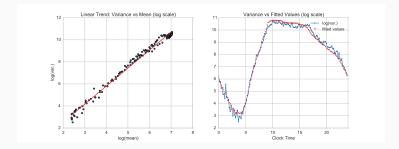
New Finding: Overdispersion is Amplified by Heavy Traffic



 $\log(Mean) < \log(Var.) < 2\log(Mean)$

• Assume a linear relationship at the logarithmic scale

 $\log(\text{Var.}) = p \log(\text{Mean}) + c$

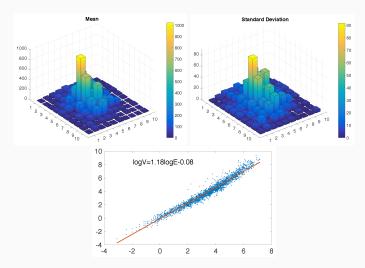


- $p \approx 1.6$ and $R^2 = 0.99$
- Taylor's law in ecology (Taylor, 1960), also found in physics, finance, etc.
- · Conjecture: change safety margin of the staffing rule

$$\mathcal{O}(\lambda^{1/2}) \longmapsto \mathcal{O}(\lambda^{p/2})$$

Another Example (with Spatial Info.)

- Ride information of DiDi Chengdu in Nov. 2016: time and location
- $\cdot\,$ Partition the city into 10 \times 10 grid, partition one day into 24 hours



Desirable Features for Arrival Model

- \cdot Overdispersion
- Fluctuation scaling with power law
- Poisson microstructure
- Analytical tractability

Typical Treatment for Overdispersion

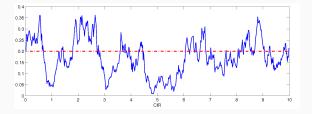
- Doubly stochastic Poisson process (DSPP): stochastic arrival rate
- Whitt (1999): $A(t) = N(\lambda Gt)$
 - G is a random variable with $\mathbb{E}(G) = 1$, capturing day-to-day random variation, i.e. "busyness of the day"
- This model implies Var. $\sim \mathcal{O}(\lambda^2)$

$$\operatorname{Var}(N(\lambda Gt)) = \lambda t + \lambda^2 t^2 \operatorname{Var}(G)$$

- Overestimate overdispersion: $p \in (0, 1)$
- Lack of flexibility

• A(t): a DSPP with arrival rate X(t)

$$dX(t) = \kappa(\lambda - X(t)) dt + \sigma \lambda^{\alpha} \sqrt{X(t)} dB(t)$$



- $\cdot X(t) > 0$
- Equilibrium of X(t) is λ
- Volatility term: $\sigma \lambda^{\alpha} \sqrt{X(t)} \sim \mathcal{O}(\lambda^{\alpha+1/2})$
- So $\operatorname{Var}[A(t)] \sim \mathcal{O}(\lambda^{2\alpha+1})$: $p = 2\alpha + 1$

Limit Theorem

Theorem

Suppose X(t) is initialized with its stationary distribution π and $\alpha \in (0, \frac{1}{2})$. Then, for any given t > 0,

$$\frac{A_{\lambda}(t)-\lambda t}{\lambda^{\alpha+\frac{1}{2}}} \Rightarrow \int_{0}^{t} U(s) \, \mathrm{d}s,$$

as $\lambda \to \infty$, where U(t) is an Ornstein-Uhlenbeck (OU) process

 $\mathrm{d}U(t) = -\kappa U(t)\,\mathrm{d}t + \sigma \mathrm{d}B(t),$

with initial distribution being its unique stationary distribution, i.e. normal distribution with mean 0 and variance $\frac{\sigma^2}{2\kappa}$.

• Critical for deriving the staffing rule

Staffing Rule

Service Quality v.s. Utilization

- + Large queueing system: both λ and number of servers are large
- Service quality is measured by delay probability
- Goal: find minimum number of servers to make delay probability $\leq \epsilon$
- Key: distribution of queue length

Infinite-server Queue Approximation

- · Consider an infinite-server queue with exponential service times
- Let $Q_{\lambda}(t)$ denote the number of customers in the system
- · Consider the scaled number of customers

$$\tilde{Q}_{\lambda} = \frac{Q(t) - \lambda/\mu}{\lambda^{\alpha + \frac{1}{2}}}$$

- Show $\tilde{Q}_{\lambda}(t)$ converges a non-degenerate limit $\tilde{Q}_{\infty}(t)$ as $\lambda \to \infty$
- · Compute the stationary distribution of $\tilde{Q}_{\infty}(t)$ as $t \to \infty$, denoted by \tilde{Q}_{∞}
- n: number of servers in the many-server queue

$$\epsilon \approx \mathbb{P}(Q_{\lambda}(t) \ge n) = \mathbb{P}\left(\tilde{Q}_{\lambda}(t) \ge \frac{n - \lambda/\mu}{\lambda^{\alpha + \frac{1}{2}}}\right) \approx \mathbb{P}\left(\tilde{Q}_{\infty} \ge \frac{n - \lambda/\mu}{\lambda^{\alpha + \frac{1}{2}}}\right)$$

• Let β solves $\mathbb{P}(\tilde{Q}_{\infty} \geq \beta) = \epsilon$, then

$$n^* \approx \frac{\lambda}{\mu} + \beta \cdot \lambda^{\alpha + \frac{1}{2}}$$

+ β can be computed explicitly

Stationary Distribution $\tilde{\textit{Q}}_\infty$

• By virtue of the exponential service assumption,

$$Q_{\lambda}(t) = Q_{\lambda}(0) + A_{\lambda}(t) - N'\left(\mu \int_{0}^{t} Q_{\lambda}(s) \, \mathrm{d}s\right),$$

where $N'(\cdot)$ is an independent Poisson process with unit rate

$$Q_{\lambda}(t) - \frac{\lambda}{\mu} = Q_{\lambda}(0) - \frac{\lambda}{\mu} + A_{\lambda}(t) - \lambda t - \mu \int_{0}^{t} Q_{\lambda}(s) ds - \lambda t$$
$$- N' \left(\mu \int_{0}^{t} Q_{\lambda}(s) ds \right) - \mu \int_{0}^{t} Q_{\lambda}(s) ds$$

+ Scaled by $\lambda^{\alpha+\frac{1}{2}}$ and letting $\lambda \to \infty$

$$\tilde{Q}_{\infty}(t) = \tilde{Q}_{\infty}(0) + \int_0^t U(s) \, \mathrm{d}s - \mu \int_0^t \tilde{Q}_{\infty}(s) \, \mathrm{d}s - 0$$

• Solve the equation

$$\tilde{Q}_{\infty}(t) = \int_0^t U(s) e^{\mu(t-s)} \, \mathrm{d}s$$

- \cdot The Laplace transform of $ilde{Q}_{\infty}(t)$ can be computed analytically
- Sending $t \to \infty$ yields the Laplace transform of $ilde{Q}_\infty$
 - normal distribution
 - parameters can be calculated analytically
- + Easy to compute β in the staffing rule

$$n \approx \frac{\lambda}{\mu} + \beta \cdot \lambda^{\alpha + \frac{1}{2}}$$

by $\mathbb{P}(\tilde{Q}_{\infty} \geq \beta) = \epsilon$

Performance in Practice

- Call center of a U.S. bank
- Use customer arrivals in weekdays in 2002
- A constant staffing level for each 30-min time period
 - 48 staffing levels for a day in total
 - Static staffing: no day-to-day adjusting
- · Simulate the system with real customer arrivals and exponential service

Target Quality of Service	Our Staffing Rule	Square-root Staffing Rule
0.20	0.230	0.537
0.10	0.137	0.469
0.05	0.084	0.439

Concluding Remarks

Conclusions

- Modeling should be driven by both data and decisions
 - Arrivals' microstructure is Poisson but has little impact on performance
 - Stochastic behavior at longer time scale matters, e.g., overdispersion
- Overdispersion is amplified by heavy traffic
 - Fluctuation scales up following a power law
- Proposed New tractable arrival model to capture the power law
- Developed the associated staffing rule with safety margin $\mathcal{O}(\lambda^{\alpha+1/2})$

Questions?

References

- A. N. Avramidis, A. Deslauriers, and P. L'Ecuyer. Modeling daily arrivals to a telephone call center. *Manag. Sci.*, 50(7):896–908, 2004.
- L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao. Statistical analysis of a telephone call center: A queueing-science perspective. J. Amer. Statist. Assoc., 100(1):36–50, 2005.
- G. Jongbloed and G. Koole. Managing uncertainty in call centers using Poisson mixtures. *Appl. Stoch. Model. Bus. Ind.*, 17:307–318, 2001.
- S.-H. Kim and W. Whitt. Are call center and hospital arrivals well modeled by nonhomogeneous Poisson processes? *Manuf. Serv. Oper. Manag.*, 16(3): 464–480, 2014.
- B. N. Oreshkin, N. Régnard, and P. L'Ecuyer. Rate-based daily arrival process models with application to call centers. *Oper. Res.*, 64(2):510–527, 2016.
- L. R. Taylor. Aggregation, variance and the mean. *Nature*, 189(4766):732–735, 1960.
- W. Whitt. Dynamic staffing in a telephone call center aiming to immediately answer all calls. *Oper. Res. Lett.*, 24:205–212, 1999.