Sample and Computationally Efficient Simulation Metamodeling in High Dimensions

Xiaowei Zhang (HKU Business School)
December 5, 2020

Joint work with Liang Ding (Texas A\&M University)

Surface Fitting in 816 Dimensions

Metamodeling

- Simulation models are often computationally expensive
- Metamodel: statistical model for simulation input-output relationship
- A.K.A. surrogate model
- Run simulation at a small number of design points
- Predict responses with the fitted statistical model

Comparison with Regression

	Metamodeling	Regression
Statistical Model	Linear/Nonparametric	Linear/Nonparametric
Typical Design	Fixed	Random
Typical Noise	Heteroscedastic	Homoscedastic
Replications	Yes	No

Stochastic Kriging

- Gaussian process regression
- Response surface is a sample path of a GP with kernel $k\left(x, x^{\prime}\right)$

$$
\mathrm{Y}(\cdot) \sim \mathrm{GP}(0, k(\cdot, \cdot))
$$

- Take samples at design points $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$
- SK predictor

$$
\hat{Y}_{n}(x)=k^{\top}(x)(K+\Sigma)^{-1} \bar{Y}
$$

Critical Specifications

The prediction accuracy of SK depends on
(i) choice of kernel
(ii) choice of experimental design

Typical Kernels

- Gaussian kernel

$$
k_{G a u s s}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right):=\exp \left(-\left\|\boldsymbol{\theta}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right\|^{2}\right)
$$

- Matérn kernel

$$
k_{\text {Matérn }(\nu)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right):=\frac{1}{2^{\nu-1} \Gamma(\nu)}\left(\sqrt{2 \nu}\left\|\boldsymbol{\theta}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right\|\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu}\left\|\boldsymbol{\theta}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right\|\right)
$$

Typical Kernels

- Gaussian kernel

$$
k_{G a u s s}\left(x, x^{\prime}\right):=\exp \left(-\left\|\boldsymbol{\theta}^{\top}\left(x-x^{\prime}\right)\right\|^{2}\right)
$$

- Matérn kernel

$$
k_{\text {Matérn }(\nu)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right):=\frac{1}{2^{\nu-1} \Gamma(\nu)}\left(\sqrt{2 \nu}\left\|\boldsymbol{\theta}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right\|\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu}\left\|\boldsymbol{\theta}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right\|\right)
$$

- Generalized integrated Brownian field (Salemi et al. 2019, OR)
- Motivation: model smoothness separately for each dimension

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\prod_{j=1}^{d} k_{j}\left(x_{j}, x_{j}^{\prime}\right)
$$

- On dimension j is a Brownian motion integrated ℓ_{j} times

Typical Experimental Designs

- Latin hypercube design (LHD)
- Pros: ease of use; 1-d projections onto are evenly dispersed
- Con: superiority only holds for large sample sizes when d is large
- Lattice design: Cartesian product of one-dimensional designs
- Pro: $\boldsymbol{K}^{-1}=\bigotimes_{j=1}^{d} \boldsymbol{K}_{j}^{-1}$ for tensor-product kernels
- Con: excessive sample size when design space when d is large

Curse of Dimensionality

- Sample complexity: n grows exponentially in d
- Computational complexity: $\mathcal{O}\left(n^{3}\right)$

Curse of Dimensionality: Sample Complexity

- Sample paths of a GP with Matérn (α) kernel form a Sobolev space
- α represents the smoothness
- Minimax-optimal rate for estimating Y via noisy samples: $n^{-\alpha /(2 \alpha+d)}$
- So, sample complexity for achieving an δ-error is $\delta^{-(2+d / \alpha)}$
- Practical situation could be even worse due to model misspecification
- SK is specified with Matérn (ν) kernel
- Convergence rate: $\mathcal{O}\left(n^{-\min (\alpha, \nu) /(2 \nu+d)}\right)$

Combact the Curse with Smoothness?

- Given a large d, the convergence rate is fast with a large α
- Why don't we set/assume $\alpha=\infty$?
- Infinitely differentiable response surface is rare
- E.g., the max function often appears in queueing, inventory, FE models

Curse of Dimensionality: Computational Complexity

- Computing $(K+\Sigma)^{-1}$ requires $\mathcal{O}\left(n^{3}\right)$
- Subsampling to construct a low-rank approximation: $\mathcal{O}\left(\ell^{2} n\right)$
- Lu et al. (2020, OR), but huge literature in machine learning and statistics

This Work

- "New" kernel: Tensor Markov (TM) kernels
- New exponential design: Random sparse grid (RSG) designs
- Convergence rate: "weakly" dependent of d
- Fast, exact computation

TM Kernels

- Tensor-product form: $k\left(x, x^{\prime}\right)=\prod_{j=1}^{d} k_{j}\left(x_{j}, x_{j}^{\prime}\right)$
- Each k_{j} corresponds to a Gauss-Markov process
- Brownian motion: $k\left(x, x^{\prime}\right)=x \wedge x^{\prime}$
- Stationary OU process: $k\left(x, x^{\prime}\right)=\exp \left(-\theta\left|x-x^{\prime}\right|\right)$

Markov Properties

- Facilitate computation
- One-dimensional case: \boldsymbol{K}^{-1} is tri-diagonal
- Assume $X=[0,1]$ and $x_{i}=\frac{i}{n+1}, i=1, \ldots, n$
- Brownian motion: $k(x, y)=\min (x, y)$

$$
\boldsymbol{K}^{-1}=(n+1)\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right)
$$

Nowhere-differentiable Sample Paths

- Time-changed Brownian field

Classical Sparse Grids

- Controlled by a level parameter τ

Dimension d	Full Grid	Sparse Grid of Level 4
1	15	15
2	225	49
5	759,375	351
10	5.77×10^{11}	2,001
20	3.33×10^{23}	13,201
50	6.38×10^{58}	182,001

Pro and Con of Classical Sparse Grids

- Pro: Fast computation of \boldsymbol{K}^{-1} for tensor-product kernels (Plumlee, 2014, JASA)

Pro and Con of Classical Sparse Grids

- Pro: Fast computation of K^{-1} for tensor-product kernels (Plumlee, 2014, JASA)

Level τ	$d=2$	$d=5$	$d=10$	$d=20$	$d=50$
2	5	11	21	41	101
3	17	71	241	881	5,201
4	49	351	2,001	13,201	182,001
5	129	1,471	13,441	154,881	$4,867,201$

- Con: Inflexible to use, fast computation only available for complete SGs
- n must be coincide with the sample size of some level τ

Random Sparse Grids

- Find τ such that n falls between $\mathcal{X}_{\tau}^{\mathrm{SG}}$ and $\mathcal{X}_{\tau+1}^{\mathrm{SG}}$
- Random sampling on $\mathcal{X}_{\tau+1}^{\mathrm{SG}} \backslash \mathcal{X}_{\tau}^{\mathrm{SG}}$
- $\mathcal{X}_{n}^{\mathrm{RSG}}:=\mathcal{X}_{\tau}^{\mathrm{SG}} \cup \mathcal{A}$
- Fast computation of \boldsymbol{K}^{-1} only for TM kernels

Convergence Rates: Kriging

- Model well-specified: true surface is a GP with tensor Markov kernel

$$
\max _{x \in[0,1]^{d}} \mathbb{E}\left[\left(\widehat{Y}_{n}(x)-Y(x)\right)^{2}\right]=\mathcal{O}\left(n^{-1}(\log n)^{2(d-1)}\right)
$$

Convergence Rates: Kriging

- Model well-specified: true surface is a GP with tensor Markov kernel

$$
\max _{x \in[0,1]^{d}} \mathbb{E}\left[\left(\widehat{\mathrm{Y}}_{n}(x)-\mathrm{Y}(x)\right)^{2}\right]=\mathcal{O}\left(n^{-1}(\log n)^{2(d-1)}\right)
$$

- If true surface is a GP with Matérn (α) and SK uses the same kernel, then

$$
\max _{x \in[0,1]^{d}} \mathbb{E}\left[\left(\widehat{Y}_{n}(x)-Y(x)\right)^{2}\right]=\mathcal{O}\left(n^{-2 \alpha /(2 \alpha+d)}\right) .
$$

Model Mis-specification

- Smooth surface, rough kernel
- True surface is a GP with a tensor product kernel that is smoother

$$
\max _{x \in[0,1]^{\mathbb{E}}} \mathbb{E}\left[\left(\widehat{Y}_{n}^{\operatorname{mis}}(x)-Y^{*}(x)\right)^{2}\right]=\mathcal{O}\left(n^{-2}(\log n)^{3(d-1)}\right) .
$$

Convergence Rates: Stochastic Kriging

- Model well-specified:

$$
\mathcal{O}\left(n^{-1}(\log n)^{2(d-1)}+(\log n)^{d} \max _{1 \leq i \leq n} m_{i}^{-1 / 2} \sigma\left(x_{i}\right)\right) .
$$

- Model mis-specified:

$$
\mathcal{O}\left(n^{-2}(\log n)^{3(d-1)}+(\log n)^{d} \max _{1 \leq i \leq n} m_{i}^{-1 / 2} \sigma\left(x_{i}\right)\right) .
$$

Key for Proof: Orthogonal Expansions

- Expansion for TM kernels

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sum_{\tau=1}^{\infty} \sum_{(\boldsymbol{I}, i): \boldsymbol{c}_{\mathbf{l}, i} \in \mathcal{X}_{\tau}^{S G}} \frac{\phi_{\boldsymbol{I}, i}(\boldsymbol{x}) \phi_{\boldsymbol{I}, i}\left(\boldsymbol{x}^{\prime}\right)}{\left\|\phi_{\boldsymbol{I}, i}\right\|_{\mathcal{H}_{k}}^{2}}
$$

- $\phi_{l, i} \in[0,1]$
- $\left\|\phi_{1, i}\right\|_{\mathcal{H}_{k}}^{2} \asymp 2^{|l|}$

- Expansion for GP with TM kernels

$$
Y(x)=\sum_{\tau=1}^{\infty} \sum_{(l, i): c_{l, i} \in \mathcal{X}_{T}^{\mathrm{S}}} \frac{\phi_{l, i}(x)}{\left\|\phi_{l, i}\right\|_{\mathcal{H}_{k}}} Z_{l, i}
$$

- Observing $\left\{\mathrm{Y}\left(\boldsymbol{c}_{\mathbf{l}, i}\right): \boldsymbol{c}_{\mathbf{l}, \boldsymbol{i}} \in \mathcal{X}_{\tau}^{\mathrm{SG}}\right\}$ equals observing $\left\{\boldsymbol{Z}_{\boldsymbol{l}, \boldsymbol{i}}: \boldsymbol{c}_{\boldsymbol{l}, \boldsymbol{i}} \in \mathcal{X}_{\tau}^{\mathrm{SG}}\right\}$

Figure 1: Brumm and Scheidegger (2017, Econometrica)

$$
\begin{aligned}
\mathbb{E}\left[\left(\hat{Y}_{n}(\boldsymbol{x})-\mathrm{Y}(\boldsymbol{x})\right)^{2}\right] & =\sum_{\tau=\ell+1}^{\infty} \sum_{(\boldsymbol{I}, \boldsymbol{i}): \boldsymbol{c}_{\boldsymbol{I}, i} \in \mathcal{X}_{\tau}^{\mathrm{SG}}} \frac{\phi_{\boldsymbol{I}, \boldsymbol{i}}^{2}(\boldsymbol{x})}{\left\|\phi_{\boldsymbol{I}, \boldsymbol{i}}\right\|_{\mathcal{H}_{k}}^{2}} \\
& \leq \sum_{\tau=\ell+1}^{\infty} \sum_{(\boldsymbol{I}, \boldsymbol{i}): \boldsymbol{c}_{\boldsymbol{I}, i} \in \mathcal{X}_{\tau}^{\mathrm{SG}}} \frac{1}{\left\|\phi_{\boldsymbol{I}, i}\right\|_{\mathcal{H}_{k}}^{2}} \\
& \asymp \sum_{|\boldsymbol{I}|>\ell+d-1} 2^{-|\boldsymbol{I}|} \\
& =\mathcal{O}\left(2^{-\ell} \ell^{d-1}\right) \\
& =\mathcal{O}\left(n^{-1}(\log n)^{2(d-1)}\right)
\end{aligned}
$$

Fast Computation

- \boldsymbol{K}^{-1} can be expressed as

$$
\boldsymbol{K}^{-1}=\left(\begin{array}{cc}
\left|\mathcal{X}_{\tau}^{\mathrm{SG}}\right| \operatorname{dim} . & \tilde{n} \operatorname{dim} . \\
\square & \square \\
\square & \boldsymbol{D}
\end{array}\right)
$$

- Each block can be computed efficiently
- K^{-1} is sparse: Proportion of nonzero entries: $\mathcal{O}\left(n^{-1}(\log n)^{2 d}\right)$

Fast Computation

- K^{-1} can be expressed as

$$
\boldsymbol{K}^{-1}=\left(\begin{array}{cc}
\left|\mathcal{X}_{\tau}^{\mathrm{SG}}\right| \operatorname{dim} . & \tilde{n} \operatorname{dim} \\
\square & \square \\
\square & \boldsymbol{D}
\end{array}\right)
$$

- Each block can be computed efficiently
- K^{-1} is sparse: Proportion of nonzero entries: $\mathcal{O}\left(n^{-1}(\log n)^{2 d}\right)$
- Compting stochastic kriging: Woodbury matrix identity

$$
(K+\Sigma)^{-1}=\Sigma^{-1}-\Sigma^{-1}\left(K^{-1}+\Sigma^{-1}\right)^{-1} \Sigma^{-1}
$$

Griewank Function in 10 Dimensions

$$
y_{G r i e w a n k}(x)=\sum_{j=1}^{d} \frac{x_{j}^{2}}{4000}-\prod_{j=1}^{d} \cos \left(\frac{x_{j}}{\sqrt{t}}\right)+1, \quad \boldsymbol{x} \in[-4,4]^{d}, d=10
$$

A Product Assortment Problem

- Aydin and Porteus (2008, OR)
- Design variable $(d=50)$: price vector
- Response surface: expected profit

$$
y(x)=\frac{1}{2(b-a)} \sum_{j=1}^{d}\left[(b-a)\left(\frac{x_{j}-c_{j}}{x_{j}}\right)+a\right]^{2} Q_{j}^{2}(x)
$$

A Large Linear Program

- Decision variable $(d=816)$: coefficient vector of the objective function
- Response surface: optimal value

Summary

- Curse of dimensionality
- Tensor Markov kernels
- Random sparse grids
- Sample efficiency: convergence rate suffers little from curse of dimensionality
- Computational efficiency: exact computation from sparse structure of K^{-1}

