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Surface Fitting in 816 Dimensions
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Metamodeling

Sim.%
Model

Real%
System

Meta-
model

• Simulation models are often computationally expensive

• Metamodel: statistical model for simulation input-output relationship

• A.K.A. surrogate model

• Run simulation at a small number of design points

• Predict responses with the fitted statistical model
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Comparison with Regression

Metamodeling Regression

Statistical Model Linear/Nonparametric Linear/Nonparametric

Typical Design Fixed Random

Typical Noise Heteroscedastic Homoscedastic

Replications Yes No
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Stochastic Kriging

• Gaussian process regression

• Response surface is a sample path of a GP with kernel k(x , x ′)

Y(·) ∼ GP(0, k(·, ·))

• Take samples at design points {x1, . . . , xn}
• SK predictor

Ŷn(x) = kᵀ(x)(K + Σ)−1Ȳ
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Critical Specifications

The prediction accuracy of SK depends on

(i) choice of kernel

(ii) choice of experimental design
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Typical Kernels

• Gaussian kernel

kGauss(x , x ′) := exp
(
−
∥∥θᵀ(x − x ′)

∥∥2)
• Matérn kernel

kMatérn(ν)(x , x
′) :=

1

2ν−1Γ(ν)

(√
2ν
∥∥θᵀ(x − x ′)

∥∥)ν Kν(√2ν
∥∥θᵀ(x − x ′)

∥∥)

• Generalized integrated Brownian field (Salemi et al. 2019, OR)

• Motivation: model smoothness separately for each dimension

k(x , x ′) =
d∏

j=1

kj (xj , x
′
j )

• On dimension j is a Brownian motion integrated `j times
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Typical Experimental Designs

1582 Journal of the American Statistical Association, December 2014

proportional to the covariance between two outputs correspond-
ing to inputs where only the ith input differs from x to x ′. The
results in this article require this covariance structure to hold,
but no other assumptions are needed for µ(·) and C(·, ·). Section
5 discusses estimating the aforementioned mean and covariance
functions using the observations when they are unknown. For
now, we consider these functions known for simplicity of expo-
sition.

Our goal is to predict an unobserved output at an untried input
x0 given Y := [Y (x1), . . . , Y (xN )]T = y. The commonly used
predictor of y (x0) is

ŷ (x0) = µ(x0) + σ T(x0)w, (1)

where w ∈ RN is a vector of weights and σ T(x0) =
[C(x0, x1), . . . , C(x0, xN )]. In general, w is given by the fol-
lowing relation

w = "− 1 ( y − µ) ,

where µ = [µ(x1), . . . , µ(xN )]T and " is the N × N covari-
ance matrix where the element in the ith row and jth column
is C(xi , xj ). This predictor, ŷ (x0), is commonly used because
it is both the mean and median of the predictive distribution
of Y (x0) given Y = y. This property implies ŷ (x0) is optimal
among the class of both linear and nonlinear predictors of y (x0)
with respect to the quadratic and absolute loss functions.

1.2 Focus of the Article

The above approach, when applied in a direct manor, can
become intractable because the inversion of the covariance ma-
trix " is an expensive operation in terms of both memory and
processing. Direct inversion can also induce numerical errors
due to limitations of floating point mathematical computations
(Wendland 2005; Haaland and Qian 2011). Previous research
has focused on changing the matrix " to a matrix that is eas-
ier to invert, therefore, making the computation of w faster
(Furrer, Genton, and Nychka 2006; Cressie and Johannesson
2008; Banerjee et al. 2008). We term this an approximation
because this can degrade predictive performance, though some-
times only slightly.

In this work, we forgo approximations and investigate a new
approach to resolve this problem: by restricting ourselves a
general class of designs, accurate nonapproximative predictors
can be found with significantly less computational expense. This
class of experimental designs is termed sparse grid designs
and is based on the structure of eponymic interpolation and

quadrature rules. Sparse grid designs (Smolyak 1963) have been
used in conjunction with polynomial rules (Wasilkowski and
Woźniakowski 1995; Barthelmann, Novak, and Ritter 2000; Xiu
and Hesthaven 2006; Nobile et al. 2008; Xiu 2010), but these
designs have not gained popularity among users of random field
models. Here, we encourage the use of sparse grid designs by
demonstrating computational procedures to be used with these
designs where the predictor can be computed very quickly.

Section 2 will briefly describe two broad types of existing
designs and identify deficiencies of those existing types. Section
3 will explain the definition of sparse grid designs and then the
following sections will discuss three important topics:

• Section 4 explains how we can exploit the structures used
in building sparse grid designs to achieve extreme compu-
tational gains when building the predictor. Our algorithm
computes w by inverting several small matrices versus one
large matrix. This algorithm is derived from the result that
ŷ (x0) can be written as the tensor product of linear opera-
tors, see Theorem B.1 in Appendix B.

• Section 5 goes on to demonstrate that we can estimate
unknown parameters of the random field with similar com-
putational quickness. Of note is Theorem 1, which gives
an expression for the determinant of the matrix " that can
be evaluated quickly.

• Section 6 illustrates that sparse grid designs perform well
even when the input is high dimensional. We conduct em-
pirical comparisons that demonstrate good performance of
these designs which supports the positive asymptotic argu-
ments proven previously (Temlyakov 1987).

Section 7 will offer some discussions on the role of these designs
and the creation of optimal sparse grid designs.

2. SPACE-FILLING AND LATTICE DESIGNS

This section will briefly discuss existing research on space-
filling and lattice designs. The space-filling category includes
the popular Latin hypercube designs. Lattice designs are a spe-
cific class of designs where each design is a Cartesian product of
one-dimensional designs. Visual examples are given in Figure 1
and they are contrasted with an example of a sparse grid design
which will be explained in Section 3.
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Figure 1. Examples of two-dimensional designs: (a) A 41-point Latin-hypercube design. (b) The first 41 points in the Sobol sequence. (c) A
41-point sparse grid design. (d) An 81-point lattice design. Details of the construction of the sparse grid design in (c) are given in Appendix A.
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is C(xi , xj ). This predictor, ŷ (x0), is commonly used because
it is both the mean and median of the predictive distribution
of Y (x0) given Y = y. This property implies ŷ (x0) is optimal
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ŷ (x0) can be written as the tensor product of linear opera-
tors, see Theorem B.1 in Appendix B.

• Section 5 goes on to demonstrate that we can estimate
unknown parameters of the random field with similar com-
putational quickness. Of note is Theorem 1, which gives
an expression for the determinant of the matrix " that can
be evaluated quickly.

• Section 6 illustrates that sparse grid designs perform well
even when the input is high dimensional. We conduct em-
pirical comparisons that demonstrate good performance of
these designs which supports the positive asymptotic argu-
ments proven previously (Temlyakov 1987).

Section 7 will offer some discussions on the role of these designs
and the creation of optimal sparse grid designs.

2. SPACE-FILLING AND LATTICE DESIGNS

This section will briefly discuss existing research on space-
filling and lattice designs. The space-filling category includes
the popular Latin hypercube designs. Lattice designs are a spe-
cific class of designs where each design is a Cartesian product of
one-dimensional designs. Visual examples are given in Figure 1
and they are contrasted with an example of a sparse grid design
which will be explained in Section 3.

0 0.5 1
(a)

0 0.5 1
(b)

0 0.5 1
(c)

0 0.5 1
(d)

Figure 1. Examples of two-dimensional designs: (a) A 41-point Latin-hypercube design. (b) The first 41 points in the Sobol sequence. (c) A
41-point sparse grid design. (d) An 81-point lattice design. Details of the construction of the sparse grid design in (c) are given in Appendix A.

D
ow

nl
oa

de
d 

by
 [H

er
io

t-W
at

t U
ni

ve
rs

ity
] a

t 0
4:

31
 0

4 
Ja

nu
ar

y 
20

15
 

• Latin hypercube design (LHD)

• Pros: ease of use; 1-d projections onto are evenly dispersed

• Con: superiority only holds for large sample sizes when d is large

• Lattice design: Cartesian product of one-dimensional designs

• Pro: K−1 =
⊗d

j=1 K−1
j for tensor-product kernels

• Con: excessive sample size when design space when d is large
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Curse of Dimensionality

• Sample complexity: n grows exponentially in d

• Computational complexity: O(n3)
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Curse of Dimensionality: Sample Complexity

• Sample paths of a GP with Matérn(α) kernel form a Sobolev space

• α represents the smoothness

• Minimax-optimal rate for estimating Y via noisy samples: n−α/(2α+d)

• So, sample complexity for achieving an δ-error is δ−(2+d/α)

• Practical situation could be even worse due to model misspecification

• SK is specified with Matérn(ν) kernel

• Convergence rate: O(n−min(α,ν)/(2ν+d))
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Combact the Curse with Smoothness?

• Given a large d , the convergence rate is fast with a large α

• Why don’t we set/assume α =∞?

• Infinitely differentiable response surface is rare

• E.g., the max function often appears in queueing, inventory, FE models
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Curse of Dimensionality: Computational Complexity

• Computing (K + Σ)−1 requires O(n3)

• Subsampling to construct a low-rank approximation: O(`2n)

• Lu et al. (2020, OR), but huge literature in machine learning and statistics
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This Work

• “New” kernel: Tensor Markov (TM) kernels

• New exponential design: Random sparse grid (RSG) designs

• Convergence rate: “weakly” dependent of d

• Fast, exact computation

12



TM Kernels

• Tensor-product form: k(x , x ′) =
∏d

j=1 kj(xj , x
′
j )

• Each kj corresponds to a Gauss-Markov process

• Brownian motion: k(x , x ′) = x ∧ x ′

• Stationary OU process: k(x , x ′) = exp(−θ|x − x ′|)
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Markov Properties

• Facilitate computation

• One-dimensional case: K−1 is tri-diagonal

• Assume X = [0, 1] and xi = i
n+1

, i = 1, . . . , n

• Brownian motion: k(x , y) = min(x , y)

K−1 = (n + 1)


2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 1


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Nowhere-differentiable Sample Paths

• Time-changed Brownian field
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Classical Sparse Grids
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• Controlled by a level parameter τ
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Dimension d Full Grid Sparse Grid of Level 4

1 15 15

2 225 49

5 759,375 351

10 5.77× 1011 2,001

20 3.33× 1023 13,201

50 6.38× 1058 182,001
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Pro and Con of Classical Sparse Grids

• Pro: Fast computation of K−1 for tensor-product kernels (Plumlee, 2014,

JASA)

Level τ d = 2 d = 5 d = 10 d = 20 d = 50

2 5 11 21 41 101

3 17 71 241 881 5,201

4 49 351 2,001 13,201 182,001

5 129 1,471 13,441 154,881 4,867,201

• Con: Inflexible to use, fast computation only available for complete SGs

• n must be coincide with the sample size of some level τ

18
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• Pro: Fast computation of K−1 for tensor-product kernels (Plumlee, 2014,

JASA)

Level τ d = 2 d = 5 d = 10 d = 20 d = 50

2 5 11 21 41 101

3 17 71 241 881 5,201

4 49 351 2,001 13,201 182,001

5 129 1,471 13,441 154,881 4,867,201

• Con: Inflexible to use, fast computation only available for complete SGs

• n must be coincide with the sample size of some level τ
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Random Sparse Grids

• Find τ such that n falls between X SG
τ and X SG

τ+1

• Random sampling on X SG
τ+1 \ X SG

τ

• X RSG
n := X SG

τ ∪ A

• Fast computation of K−1 only for TM kernels

19



Convergence Rates: Kriging

• Model well-specified: true surface is a GP with tensor Markov kernel

max
x∈[0,1]d

E[(Ŷn(x)− Y(x))2] = O
(
n−1(log n)2(d−1)

)

• If true surface is a GP with Matérn(α) and SK uses the same kernel, then

max
x∈[0,1]d

E[(Ŷn(x)− Y(x))2] = O
(
n−2α/(2α+d)

)
.
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Model Mis-specification

• Smooth surface, rough kernel

• True surface is a GP with a tensor product kernel that is smoother

max
x∈[0,1]d

E[(Ŷmis
n (x)− Y∗(x))2] = O

(
n−2(log n)3(d−1)

)
.
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Convergence Rates: Stochastic Kriging

• Model well-specified:

O
(
n−1(log n)2(d−1) + (log n)d max

1≤i≤n
m
−1/2
i σ(x i )

)
.

• Model mis-specified:

O
(
n−2(log n)3(d−1) + (log n)d max

1≤i≤n
m
−1/2
i σ(x i )

)
.
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Key for Proof: Orthogonal Expansions

• Expansion for TM kernels

k(x , x ′) =
∞∑
τ=1

∑
(l ,i ):c l,i∈XSG

τ

φl ,i (x)φl ,i (x ′)
‖φl ,i‖2

Hk

• φl ,i ∈ [0, 1]

• ‖φl ,i‖2
Hk
� 2|l |
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• Expansion for GP with TM kernels

Y(x) =
∞∑
τ=1

∑
(l ,i ):c l,i∈XSG

τ

φl ,i (x)

‖φl ,i‖Hk

Zl ,i

• Observing {Y(c l ,i ) : c l ,i ∈ X SG
τ } equals observing {Zl ,i : c l ,i ∈ X SG

τ }

24



Figure 1: Brumm and Scheidegger (2017, Econometrica)
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E[(Ŷn(x)− Y(x))2] =
∞∑

τ=`+1

∑
(l ,i ):c l,i∈XSG

τ

φ2
l ,i (x)

‖φl ,i‖2
Hk

≤
∞∑

τ=`+1

∑
(l ,i ):c l,i∈XSG

τ

1

‖φl ,i‖2
Hk

�
∑

|l |>`+d−1

2−|l |

= O(2−``d−1)

= O
(
n−1(log n)2(d−1)

)
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Fast Computation

• K−1 can be expressed as

K−1 =


|XSG
τ | dim. ñ dim.

� �

� D


• Each block can be computed efficiently

• K−1 is sparse: Proportion of nonzero entries: O(n−1(log n)2d)

• Compting stochastic kriging: Woodbury matrix identity

(K + Σ)−1 = Σ−1 − Σ−1(K−1 + Σ−1)−1Σ−1,

27
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Griewank Function in 10 Dimensions

40
4

2
2

x
1

0

x
2

0
-2-2

-4-4

Griewank

1

2

yGriewank(x) =
d∑

j=1

x2
j

4000
−

d∏
j=1

cos

(
xj√
t

)
+ 1, x ∈ [−4, 4]d , d = 10

28



0 1000 2000 3000 4000
Number of Design Points

0

0.1

0.2

0.3

0.4

0.5

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

Griewank, =0

TM-RSG
M-LHD
M-RSG

0 1000 2000 3000 4000
Number of Design Points

0

0.1

0.2

0.3

0.4

0.5

C
om

pu
ta

tio
na

l T
im

e 
in

 S
ec

on
ds

Griewank, =0

TM-RSG
M-LHD
M-RSG

0 1000 2000 3000 4000
Number of Design Points

0

0.1

0.2

0.3

0.4

0.5

0.6

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

Griewank, =0.05

TM-RSG
M-LHD
M-RSG
G-LHD
G-RSG

0 1000 2000 3000 4000
Number of Design Points

0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

pu
ta

tio
na

l T
im

e 
in

 S
ec

on
ds

Griewank, =0.05

TM-RSG
M-LHD
M-RSG
G-LHD
G-RSG

29



A Product Assortment Problem

• Aydin and Porteus (2008, OR)

• Design variable (d = 50): price vector

• Response surface: expected profit

y(x) =
1

2(b − a)

d∑
j=1

[
(b − a)

(
xj − cj

xj

)
+ a

]2
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A Large Linear Program

• Decision variable (d = 816): coefficient vector of the objective function

• Response surface: optimal value
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Summary

• Curse of dimensionality

• Tensor Markov kernels

• Random sparse grids

• Sample efficiency: convergence rate suffers little from curse of

dimensionality

• Computational efficiency: exact computation from sparse structure of

K−1
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