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Simulation Optimization

max
x∈X

{f(x) := E[F(x)]}

• f(x) can only be evaluated via noisy, expensive samples
• E.g., the expected profit of a complex inventory system

• SO is concerned with designing sampling algorithms to allocate the simulation
budget to find a good solution

• Fu and Henderson (2017): history of SO
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SO Problem Types

• Ranking and selection (R&S)
• X is a set of a relatively small number of feasible solutions with no inherent ordering
defined

• E.g., system configurations with regard to what redundant components to use to
design a reliable system

• Hong, Fan, and Luo (2021)

• Discrete optimization via simulation (DOvS)
• X is integer-ordered: X ⊆ Zd
• E.g., inventory decisions (number of units to order) for d products
• Hong, Nelson, and Xu (2015)

• Continuous SO
• X ⊆ Rd
• Algorithms for the continuous setting can often be applied to DOvS
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Strategies for Solving Continuous SO

• Sample average approximation (Kim, Pasupathy, and Henderson, 2015)
• Stochastic approximation (Chau and Fu, 2015)
• Random search (Andradóttir, 2015)

• Surrogate-based methods (Barton and Meckesheimer, 2006)
• Flexible to capture complex surface shapes
• Capable to predict surface values where no simulation samples are observed
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Surrogates

• a.k.a. metamodel: an approximation to the response surface (simulation
input-output relationship)

• Mitigate the computational burden of running simulation experiments
• Any supervised learning model may, in principle, be used
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Criteria for Good Surrogates

• Simple structure, require no “big data” to fit
• Simulation samples are expensive

• Computationally easy to fit
• Often need to be updated as more samples become available

• Yield a predictor in explicit form
• Efficient computation of predictions
• Facilitate theoretical analysis
• Easy optimization of the surrogate
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Typical Surrogates

• Low-order polynomials
• Linear basis function models
• Gaussian processes (GPs)
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Polynomials

• The number of terms explodes in multiple dimensions
• Polynomials with orders higher than two are seldom used

f(x) = β0 +
d∑
j=1

βjxj +
d∑
j=1

d∑
k=1

βjkxjxk,

• Suitable for approximating the surface in a localized region
• β0, βj, βjk can be estimated via ordinary least squares (OLS)
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Linear Basis Function Models

f(x) = β⊺ϕ(x) =
p∑
k=1

βkϕk(x)

• ϕ(x): e.g., truncated power basis and radial basis
• β can be also estimated via OLS:

β̂ = argmin
β

1
n

n∑
i=1

(ȳi − β⊺ϕ(xi))2

= Φ⊺(ΦΦ⊺)−1ȳ,

where Φ is the n-by-p matrix with the i-th row being ϕ(xi)⊺

• The prediction is given by

f̂(x) = β̂
⊺
ϕ(x) = (Φϕ(x))⊺(ΦΦ⊺)−1ȳ
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Gaussian Processes

• Generalization of multivariate normal random variables
• Fully characterized by

• Mean function µ : X 7→ R
• Covariance function (kernel) K : X× X 7→ R

• Bayesian approach: assume prior distribution of f is GP(µ, K)

(f(x1), . . . , f(xn)) ∼ MVNormal(µ,K),

where µ = (µ(x1), . . . , µ(xn))⊺ and K = (K(xi, xi′))ni,i′=1
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Mean Functions

• Encode one’s prior knowledge about the overall shape of f
• Set µ(x) ≡ c for some constant c: common practice
• Set µ(x) = β⊺ϕ(x), where ϕ(x) is a vector of known basis functions and β is a
vector of hyperparameters of compatible dimension

• Set µ(x) to be a function derived from a simplified model of the same stochastic
system
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Kernels

• Gaussian kernels
KGaussian(x, x′) = τ 2 exp

(
−∥x− x′∥2

2η2

)
• Matérn kernels

KMatern(x, x′; ν) =
τ 2

Γ(ν)2ν−1

(√
2ν∥x− x′∥

η

)ν

Kν
(√

2ν∥x− x′∥
η

)

• ν : smoothness parameter, usually set to be 1/2, 3/2, 5/2, . . .
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GP Regression

• Assume simulation noise is Gaussian with known variance
• Posterior of f is also a GP

• Use the posterior mean for prediction

f̂(x) = µ(x) + k(x)⊺(K+Σ)−1(ȳ− µ),

where k(x) = (K(x, x1), . . . , K(x, xn))⊺ and Σ is a diagonal matrix
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Enhancing Surrogates with Stylized Models

• The main features of a complex system may be captured by a stylized model that
yields an analytical expression, say ψ(x)

• Complicated queueing network v.s. independent nodes

• Use ψ in linear basis function models or in the mean functions of GPs
• Shen, Hong, and Zhang (2018); Lin, Matta, and Shanthikumar (2019)
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Enhancing Surrogates with Gradient Observations

• Given a sample of f(x), an estimate of ∇f(x) can often be computed with a
negligible extra cost

• Infinitesimal perturbation analysis or the likelihood ratio method (L’Ecuyer, 1990)

• Surrogate for f induces surrogate for ∇f: jointly estimate the parameters
• Chen, Ankenman, and Nelson (2013); Fu and Qu (2014); Qu and Fu (2014); Huo,
Zhang, and Zheng (2018)
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Part II: Locally Convergent SO Algorithms
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Global Convergence v.s. Local Convergence

• Global: converge to a global optimal solution
• Local: converge to a local optimal solution or a stationary point

• Global convergence requires exploring the entire feasible region in the limit
• Local convergence only needs to explore part of the feasible region

• Advantageous when the simulation budget is very limited
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Response Surface Methodology (RSM)

• Stage 1
• Run a number of experiments in a local region of the current solution
• Fit a first-order polynomial: f(x) = β0 +

∑d
j=1 βjxj

• Find a better solution along the ascent direction ∇f(x) = (β1, . . . , βd)
⊺

• Repeat the process until first-order polynomials are no longer adequate

• Stage 2
• Fit a second-order polynomial: f(x) = β0 +

∑d
j=1 βjxj +

∑d
j=1

∑d
k=1 βjkxjxk

• Maximize the polynomial
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Heuristic Nature of RSM

• Procedure involves human judgement
• In each iteration, the local region over which one optimizes the surrogate is
determined based human experience

• The transition between first- and second-order surrogates relies on human
experience

• Typically used for (very) expensive simulation/real experiments, so large-sample
properties such as convergence are not clear

• Chang, Hong, and Wan (2013): use the trust-region method to address the
heuristic nature of RSM
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Stochastic Trust-Region Response-Surface Method (STRONG)

• Iteration k: xk is the current solution, ∆k is the size of the trust region
(1) Fit a surrogate rk(x) around xk

• If ∆k ≥ ∆̃, rk(x) is a first-order polynomial
• Otherwise, rk(x) is a second-order polynomial

(2) Solve x∗k = argmax{rk(x) : x ∈ B(xk,∆k)}

(3) Simulate a number of observations at x∗k and estimate f(x∗k );
(4) Conduct two tests to update xk+1 and ∆k+1

• One tests whether x∗k is significantly better than xk
• The other tests whether the surrogate works well
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Two Tests

• If x∗k is not significantly better than xk, then set xk+1 = xk and decrease ∆k

• If x∗k is significantly better than xk, then compute the ratio between the observed
and predicted improvements

ρk =
f̄k(x∗k )− f̄k(xk)
rk(x∗k )− rk(xk)

• If ρk is large (surrogate works well), then set xk+1 = x∗k and increase ∆k
• If ρk is small (surrogate works poorly), then set xk+1 = xk and decrease ∆k
• Otherwise: set xk+1 = x∗k and keep ∆k
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Rigorous Nature of STRONG

• Procedure involves no human judgement
• The local region is the trust region and its size is updated based on two tests
• The transitions between first- and second-order surrogates are based on ∆k

• The STRONG algorithm converges to a stationary point
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Part III: Globally Convergent SO Algorithms
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Static Experimental Designs

• Select design points X = {x1, . . . , xn} before any simulation
• Primary design principle: cover the design space as much as possible
• E.g., space-filling designs (Santner, Williams, and Notz, 2003)

• Run simulation at each design point, possibly multiple times
• Fit a surrogate with the observations
• Optimize the predicted surface f̂(x)—a deterministic function—with any
numerical optimization algorithms

22



Sequential Experimental Designs

• Design points are selected one at a time after each new sample is obtained
• Each new design point is selected based on

• The updated surrogate reflecting the previous observations
• Certain criterion that balances exploration and exploitation

• GPs are the favorite because of the need for uncertainty quantification
• Closely related to “Bayesian optimizaiton” (Shahriari et al., 2016; Frazier, 2018)

23



Sequential Experimental Designs

• Design points are selected one at a time after each new sample is obtained
• Each new design point is selected based on

• The updated surrogate reflecting the previous observations
• Certain criterion that balances exploration and exploitation

• GPs are the favorite because of the need for uncertainty quantification
• Closely related to “Bayesian optimizaiton” (Shahriari et al., 2016; Frazier, 2018)

23



General Structure

(1) Impose a GP prior on f
(2) Select the next batch of design points subject to a prescribed “criterion”
(3) Run simulation at each of the newly selected design points
(4) Update the GP posterior given the new observations of f
(5) Repeat Steps (2)–(4) until the simulation budget is exhausted
(6) Optimize the posterior mean function and return the optimum

24



Knowledge Gradient (KG)

• Given Dn = {(xi, yi) : i = 1, . . . ,n}, the posterior f|Dn ∼ GP(µn, Kn)
• Updating equations for µn and Kn are in closed form

• Select xn+1 = argmaxx∈X KGn(x)

KGn(x) := E
[
max
v∈X

µn+1(v)−max
v∈X

µn(v)︸ ︷︷ ︸
increment in belief about max

v
f(v)

∣∣Dn, xn+1 = x
]

• Conditional on {Dn, xn+1 = x}: µn+1(v) has a normal distribution that depends
on x, while µn(v) is a constant
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Maximizing KGn(x)

• Scott, Frazier, and Powell (2011): discretization

K̃Gn(x) := E
[

max
1≤i≤n+1

µn+1(xi)− max
1≤i≤n+1

µn(xi)
∣∣Dn, xn+1 = x

]
• Wu and Frazier (2016): stochastic approximation

∇xKGn(x) = ∇x E
[
max
v∈X

µn+1(v)−max
v∈X

µn(v)
∣∣Dn, xn+1 = x

]
= E

[
∇xmax

v∈X
µn+1(v)

∣∣Dn, xn+1 = x
]

26



Upper Confidence Bound (UCB)

• A celebrated class of methods for multi-armed bandit (MAB) problems
• MAB: online, maximize cumulative reward
• R&S: offline, maximize terminal reward

• GP-UCB: Srinivas et al. (2012) generalize UCB to the continuous setting
• Selecte xn+1 = argmaxx∈X UCBn(x)

UCBn(x) := µn(x) +
√
γnKn(x, x),

where γn > 0 is a tuning parameter that varies as a function of n

• MAB: γn ≍ ln(n)
• SO: conceivably larger due to emphasis on the terminal reward

• More exploration is needed
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GP-UCB v.s. KG

GP-UCB KG

Max. acquisition function easy hard
Tuning parameter γn n.a.
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GP-based Search (GPS)

• Given Dn = {(xi, yi) : i = 1, . . . ,n}, the posterior f|Dn ∼ GP(µn, Kn)
• Use probability of improvement to devise a sampling distribution

hn(x) ∝ Pr(Normal(µn(x), Kn(x, x)) > f∗n),

where f∗n is the current estimated optimal value
• Draw the next batch of design points from hn(·)

• Sun, Hong, and Hu (2014): Markov chain Monte Carlo
• Sun, Hu, and Hong (2018): Gaussian mixture approximation
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GPS v.s. KG/GP-UCB

GPS KG/GP-UCB

Criterion sampling distribution acquisition function
# points determined batch one at a time
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Part IV: Computation for Large Datasets
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Scalability Issue

• Many computations involve matrix inversion

Linear basis function model: f̂(x) = (Φϕ(x))⊺(ΦΦ⊺)−1ȳ

GP regression: f̂(x) = µ(x) + k(x)⊺(K+Σ)−1(ȳ− µ)

• Surrogates become computationally challenging when n is large
• Time complexity: O(n3)
• Space complexity: O(n2)

• Vast literature on GP approximations
• Nyström method
• Random features
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Low-rank Approximations and Woodbury Formula

• Goal: approximate (K+Σ)−1, where Σ is a diganoal matrix
• Consider a rank-m matrix of the form K̃ = UCV, where U ∈ Rn×m, C ∈ Rm×m, and
V ∈ Rm×n with m < n

• Woodbury formula:

(K+Σ)−1 ≈ (K̃+Σ)−1 = Σ−1 − Σ−1U(C−1 + VΣ−1U︸ ︷︷ ︸
m×m

)−1VΣ−1

• Construct another kernel K̃(·, ·) that yields a low-rank K̃
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Nyström Method

• Smola and Schölkopf (2000); Rudi et al. (2015); Lu et al. (2020)
• Select m design points out of {x1, . . . , xn}

• I = {1, . . . , n}
• A ⊂ I is the selected indices

• Let km(x) = (K(xi, x))i∈A and Km,m := (K(xi, xi′))i∈A,i′∈A

K̃(x, x′) := km(x)⊺K−1
m,mkm(x′)

• The covariance matrix associated with evaluating K̃ at {x1, . . . , xn} is

K̃ = Kn,mK−1
m,mKm,n
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Posterior of GP(µ, K̃)

E[̃f(x)|Dn] = µ(x) + km(x)⊺(Km,m + Km,nΣ
−1Kn,m︸ ︷︷ ︸

m×m

)−1Km,nΣ
−1(ȳ− µ)

Cov[̃f(x), f̃(x′)|Dn] = K(x, x′)− km(x)⊺(Km,m + Km,nΣ
−1Kn,m︸ ︷︷ ︸

m×m

)−1km(x′)

• Both can be computed with time complexity O(m2n)
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Random Features

• Rahimi and Recht (2007): random Fourier features (RFF)
• Bochner’s theorem: if K is stationary (e.g., Gaussian and Matérn), then

K(x, x′) = K(0, 0)
∫
Rd
eiω⊺(x−x′)p(dω)

= K(0, 0)
∫
Rd

cos
(
ω⊺(x− x′)

)
p(dω)

= K(0, 0)Eω

[
cos

(
ω⊺(x− x′)

)]
,

where p(·) is a probability measure on Rd

• If K is Gaussian, then p(·) is multivariate normal
• If K is Matérn, then p(·) is multivariate Student’s T
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Monte Carlo Approximation

• Straightforward calculation shows: if b ∼ Unif[0, 2π], then

Eω

[
cos

(
ω⊺(x− x′)

)]
= Eω,b

[√
2 cos (ω⊺x+ b)

√
2 cos

(
ω⊺x′ + b

)]
• Draw ωt from p(·) and bt from Unif[0, 2π]

K(x, x′) ≈ K(0, 0) · 1m

m∑
t=1

√
2 cos (ω⊺

t x+ bt)
√
2 cos

(
ω⊺
t x

′ + bt
)

:=
m∑
t=1

ϕt(x)ϕt(x′) := K̃(x, x′),

• ϕm(x) = (ϕ1(x), . . . , ϕm(x))⊺ is a vector of basis functions (i.e., features)
• The covariance matrix associated with evaluating K̃ at {x1, . . . , xn} is

K̃ =


ϕm(x1)⊺

...
ϕm(xn)⊺

(
ϕm(x1) · · · ϕm(xn)

)
:= ΦmΦ

⊺
m.

36



Monte Carlo Approximation

• Straightforward calculation shows: if b ∼ Unif[0, 2π], then

Eω

[
cos

(
ω⊺(x− x′)

)]
= Eω,b

[√
2 cos (ω⊺x+ b)

√
2 cos

(
ω⊺x′ + b

)]
• Draw ωt from p(·) and bt from Unif[0, 2π]

K(x, x′) ≈ K(0, 0) · 1m

m∑
t=1

√
2 cos (ω⊺

t x+ bt)
√
2 cos

(
ω⊺
t x

′ + bt
)

:=
m∑
t=1

ϕt(x)ϕt(x′) := K̃(x, x′),

• ϕm(x) = (ϕ1(x), . . . , ϕm(x))⊺ is a vector of basis functions (i.e., features)
• The covariance matrix associated with evaluating K̃ at {x1, . . . , xn} is

K̃ =


ϕm(x1)⊺

...
ϕm(xn)⊺

(
ϕm(x1) · · · ϕm(xn)

)
:= ΦmΦ

⊺
m.

36



RFF v.s. Nyström

RFF Nyström

Data-dependent? No Yes
Kernel-dependent? Yes No
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Summary

• Low-order polynomials, linear basis function models, and GPs
• Enhancement via stylized models and/or gradient observations

• Locally convergent: RSM, STRONG
• Globally convergent: KG, GP-UCB, GPS

• Scalable GP computations: the Nyström method, random features
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Future Studies

• Integrate local search and global search
• Leverage structural info (convexity/smoothness) to accelerate convergence
• Deeper theoretical understanding of SO algorithms
• Parallel computing
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