Affine jump-diffusions constitute a large class of continuous-time stochastic models that are particularly popular in finance and economics due to their analytical tractability. Methods for parameter estimation for such processes require ergodicity in order establish consistency and asymptotic normality of the associated estimators. In this paper, we develop stochastic stability conditions for affine jump-diffusions, thereby providing the needed large-sample theoretical support for estimating such processes. We establish ergodicity for such models by imposing a ‘‘strong mean reversion’’ condition and a mild condition on the distribution of the jumps, i.e. the finiteness of a logarithmic moment. Exponential ergodicity holds if the jumps have a finite moment of a positive order. In addition, we prove strong laws of large numbers and functional central limit theorems for additive functionals for this class of models.